Abstract
Perturbation theory is an important tool in the analysis of oscillators and their response to external stimuli. It is predicated on the assumption that the perturbations in question are “sufficiently weak”, an assumption that is not always valid when perturbative methods are applied. In this paper, we identify a number of concrete dynamical scenarios in which a standard perturbative technique, based on the infinitesimal phase response curve (PRC), is shown to give different predictions than the full model. Shear-induced chaos, i.e., chaotic behavior that results from the amplification of small perturbations by underlying shear, is missed entirely by the PRC. We show also that the presence of “sticky” phase–space structures tend to cause perturbative techniques to overestimate the frequencies and regularity of the oscillations. The phenomena we describe can all be observed in a simple 2D neuron model, which we choose for illustration as the PRC is widely used in mathematical neuroscience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.