Abstract

Quantum communication research has in recent years shifted to include multipartite networks for which questions of quantum network routing naturally emerge. To understand the potential for multipartite routing, we focus on the most promising architectures for future quantum networks---those connecting nodes close to each other. Nearest-neighbor networks, such as rings, lines, and grids, have been studied under different communication scenarios to facilitate the sharing of quantum resources especially in the presence of bottlenecks. We analyze the potential of nearest-neighbor entangling gate quantum networks and identify some serious limitations by demonstrating that rings and lines cannot overcome common bottleneck communication problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.