Abstract

The most recent safety guidelines define basic restrictions for electromagnetic field exposure at frequencies more than 6 GHz in terms of spatial- and time-averaged transmitted power density inside the body. To enable easy-to-perform evaluations in situ, the reference levels for the incident power density were derived. In this study, we examined whether compliance with the reference levels always ensures compliance with basic restrictions. This was evaluated at several distances from different antennas (dipole, loop, slot, patch, and helix). Three power density definitions based on integration of the perpendicular real part of the Poynting vector, the real part of its three vector components, and its modulus were compared for averaging areas of λ2 /16, 4 cm2 (below 30 GHz) and 1 cm2 (30 GHz). In the reactive near-field (d < λ/(2π)), the transmitted power density can be underestimated if an antenna operates at the free space exposure limit. This underestimation may exceed 6 dB (4.0 times) and depends on the field source due to different coupling mechanisms. It is frequency-dependent for fixed-size averaging areas (4 and 1 cm2 ). At larger distances, transmission can be larger than the theoretical plane-wave transmission coefficient due to backscattering between the body and field source. Using the modulus of the incident Poynting vector yields the smallest underestimation. © 2020Bioelectromagnetics Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.