Abstract

Background: Genetic profiling of resected tumor or biopsy samples is increasingly used for cancer diagnosis and therapy selection for thyroid and other cancer types. Although mutations occur in cell DNA and are typically detected using DNA sequencing, recent attempts focused on detecting pathogenic variants from RNA. The aim of this study was to determine the completeness of capturing mutations using RNA sequencing (RNA-Seq) in thyroid tissue and fine-needle aspiration (FNA) samples.Methods: To compare the detection rate of mutations between DNA sequencing and RNA-Seq, 35 tissue samples were analyzed in parallel by whole-exome DNA sequencing (WES) and whole-transcriptome RNA-Seq at two study sites. Then, DNA and RNA from 44 thyroid FNA samples and 47 tissue samples were studied using both targeted DNA sequencing and RNA-Seq.Results: Of 162 genetic variants identified by WES of DNA in 35 tissue samples, 77 (48%) were captured by RNA-Seq, with a detection rate of 49% at site 1 and 46% at site 2 and no difference between thyroid and nonthyroid samples. Targeted DNA sequencing of 91 thyroid tissue and FNA samples detected 118 pathogenic variants, of which 57 (48%) were identified by RNA-Seq. For DNA variants present at >10% allelic frequency (AF), the detection rate of RNA-Seq was 62%, and for those at low (5–10%) AF, the detection rate of RNA-Seq was 7% (p < 0.0001). For common oncogenes (BRAF and RAS), 94% of mutations present at >10% AF and 11% of mutations present at 5–10% AF were captured by RNA-Seq. As expected, none of TERT promoter mutations were identified by RNA-Seq. The rate of mutation detection by RNA-Seq was lower in FNA samples than in tissue samples (32% vs. 49%, p = 0.02).Conclusions: In this study, RNA-Seq analysis detected only 46–49% of pathogenic variants identifiable by sequencing of tumor DNA. Detection of mutations by RNA-Seq was more successful for mutations present at a high allelic frequency. Mutations were more often missed by RNA-Seq when present at low frequency or when tested on FNA samples. All TERT mutations were missed by RNA-Seq. These data suggest that RNA-Seq does not detect a significant proportion of clinically relevant mutations and should be used with caution in clinical practice for detecting DNA mutations.

Highlights

  • Genetic profiling of human tumors is increasingly used to improve cancer diagnosis and prognostication and to identify potential therapeutic targets [1]

  • To evaluate the rate of detection of cancer-related genetic variants that occur in DNA using tumor RNA, 35 tumor tissue samples were analyzed using whole-exome DNA sequencing and whole-transcriptome RNA sequencing (RNA-Seq) at two participating study sites

  • APPA is accuracy of detection of cancer-related genomic variants by RNA-Seq, which is calculated as a percentage of variants detected by RNA-Seq out of all genomic variants detected by DNA sequencing (WES)

Read more

Summary

Introduction

Genetic profiling of human tumors is increasingly used to improve cancer diagnosis and prognostication and to identify potential therapeutic targets [1]. The aim of this study was to determine the completeness of capturing mutations using RNA sequencing (RNASeq) in thyroid tissue and fine-needle aspiration (FNA) samples. DNA and RNA from 44 thyroid FNA samples and 47 tissue samples were studied using both targeted DNA sequencing and RNA-Seq. Results: Of 162 genetic variants identified by WES of DNA in 35 tissue samples, 77 (48%) were captured by RNA-Seq, with a detection rate of 49% at site 1 and 46% at site 2 and no difference between thyroid and nonthyroid samples. Targeted DNA sequencing of 91 thyroid tissue and FNA samples detected 118 pathogenic variants, of which 57 (48%) were identified by RNA-Seq. For DNA variants present at >10% allelic frequency (AF), the detection rate of RNA-Seq was 62%, and for those at low (5–10%) AF, the detection rate of RNA-Seq was 7% ( p < 0.0001). These data suggest that RNA-Seq does not detect a significant proportion of clinically relevant mutations and should be used with caution in clinical practice for detecting DNA mutations

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call