Abstract
Abstract Coarse-gridded atmospheric models often account for subgrid-scale variability by specifying probability distribution functions (PDFs) of process rate inputs such as cloud and rainwater mixing ratios (qc and qr, respectively). PDF parameters can be obtained from numerous sources: in situ observations, ground- or space-based remote sensing, or fine-scale modeling such as large-eddy simulation (LES). LES is appealing to constrain PDFs because it generates large sample sizes, can simulate a variety of cloud regimes/case studies, and is not subject to the ambiguities of observations. However, despite the appeal of using model output for parameterization development, it has not been demonstrated that LES satisfactorily reproduces the observed spatial structure of microphysical fields. In this study, the structure of observed and modeled microphysical fields are compared by applying bifractal analysis, an approach that quantifies variability across spatial scales, to simulations of a drizzling stratocumulus field that span a range of domain sizes, drop concentrations (a proxy for mesoscale organization), and microphysics schemes (bulk and bin). Simulated qc closely matches observed estimates of bifractal parameters that measure smoothness and intermittency. There are major discrepancies between observed and simulated qr properties, though, with bulk simulated qr consistently displaying the bifractal properties of observed clouds (smooth, minimally intermittent) rather than rain while bin simulations produce qr that is appropriately intermittent but too smooth. These results suggest fundamental limitations of bulk and bin schemes to realistically represent higher-order statistics of the observed rain structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.