Abstract

Abstract. Simulating the complex aerosol microphysical processes in a comprehensive Earth system model can be very computationally intensive; therefore many models utilize a modal approach, where aerosol size distributions are represented by observation-derived lognormal functions, and internal mixing between different aerosol species within an aerosol mode is often assumed. This approach has been shown to yield satisfactory results across a large array of applications, but there may be cases where the simplification in this approach may produce some shortcomings. In this work we show specific conditions under which the current approximations used in some modal approaches might yield incorrect answers. Using results from the Community Earth System Model v1 (CESM1) Geoengineering Large Ensemble (GLENS) project, we analyze the effects in the troposphere of a continuous increasing load of sulfate aerosols in the stratosphere, with the aim of counteracting the surface warming produced by non-mitigated increasing greenhouse gas (GHG) concentrations between 2020–2100. We show that the simulated results pertaining to the evolution of sea salt and dust aerosols in the upper troposphere are not realistic due to internal mixing assumptions in the modal aerosol treatment, which in this case reduces the size, and thus the settling velocities, of those particles and ultimately changes their mixing ratio below the tropopause. The unnatural increase of these aerosol species affects, in turn, the simulation of upper tropospheric ice formation, resulting in an increase in ice clouds that is not due to any meaningful physical mechanisms. While we show that this does not significantly affect the overall results of the simulations, we point to some areas where results should be interpreted with care in modeling simulations using similar approximations: in particular, in the evolution of upper tropospheric clouds when large amounts of sulfate are present in the stratosphere, as after a large explosive volcanic eruption or in similar stratospheric aerosol injection cases. Finally, we suggest that this can be avoided if sulfate aerosols in the coarse mode, the predominant species in these situations, are treated separately from other aerosol species in the model.

Highlights

  • A comprehensive representation of aerosol processes in Earth system models is crucial for a variety of reasons

  • In particular, we focus on the Community Atmosphere Model version 5.0 (CAM5) and its implementation in the Community Earth System Model (CESM), using the Modal Aerosol Module with three modes (MAM3, Liu et al, 2012)

  • Cirrus clouds play an important part in the radiation budget, but have generally been poorly represented in general circulation models (GCMs) for a variety of reasons, among them a poor horizontal resolution which fails to capture the scale needed to represent some of the processes and a large spread in the ice water content simulated by models (Jiang et al, 2012)

Read more

Summary

Introduction

A comprehensive representation of aerosol processes in Earth system models is crucial for a variety of reasons. Atmospheric aerosols may have different sizes, ranging from 0.001 to 100 μm in diameter, and their characteristics (number concentration, mass, shape, chemical composition and other physical properties) may change through emission (from natural or anthropogenic sources), nucleation (defined as the formation of new particles), coagulation (defined as the combination of existing aerosol particles, decreasing their number concentration but leaving the overall mass unaltered), condensational growth of chemical species in vapor form (such as H2SO4, NH3, HNO3 and volatile organics gases) on existing particles, gas-phase and aqueous-phase chemistry, water uptake (Ghan and Zaveri, 2007) and their removal through gravitational settling (dry deposition), incloud scavenging (defined as the removal of aerosol particles by precipitation particles) and below-cloud scavenging (defined as the capture of aerosol particles by precipitating droplets, Feng, 2009) They can, be composed of different chemical species: the main components are usually sea salt, mineral dust, black carbon, organic matter, nitrate, ammonium and sulfate.

Model description
The Modal Aerosol Model in CESM
The formation of cirrus ice clouds in CESM
Simulated tropospheric aerosols
Effect on cirrus cloud formation
Radiative effects
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call