Abstract

A model system was used to examine the relation between the duration of plaque pH fall and enamel demineralization following the intake of dietary carbohydrate in humans. Subjects wore palatal appliances containing blocks of bovine enamel covered with Streptococcus mutans IB 1600, and rinsed with 5 or 10% sucrose. Changes in iodide penetrability (delta Ip) of the enamel, and the pH and extracellular calcium and inorganic phosphate (Pi) concentrations of the streptococcal plaque were determined. Following rinses with 5% sucrose, delta Ip increased with time and reached a maximum (11.2 +/- 2.2 units) at 45-60 min although the S. mutans plaque remained acidic (pH = 4.8 +/- 0.6). After 10% sucrose, the maximum (14.7 +/- 3.1 units) was reached while the plaque pH was 4.0 +/- 0.3. Second rinses with sucrose increased delta Ip at most by 30%. Thus, demineralization did not persist throughout the period of low plaque pH, but occurred primarily during the early phase of plaque acidogenesis. Enamel demineralization appeared to be limited by factors other than the pH of the streptococcal plaque. Calcium concentrations in the S. mutans plaque rose to a maximum of 10.9 +/- 2.8 mEq/l at 30 min after the 5% sucrose rinses, then fell; Pi reached a stable level of 12.2 +/- 2.3 mEq/l by 60 min. Calculations showed that conditions approached saturation with respect to enamel and dicalcium phosphate dihydrate as demineralization reached a maximum. Demineralization appeared to be limited at low plaque pH, therefore, by the accumulation of high levels of mineral ions in the streptococcal plaque.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call