Abstract
The accuracy of photoconductance-based minority carrier lifetime measurement techniques is studied in detail. Regarding their accuracy and comparability, the quasi steady state photoconductance (QSSPC) as well as the novel steady state microwave detected photoconductivity (MDP) method are compared with the traditional microwave detected photoconductance decay (μPCD). We show that differences in measurement conditions and analyzing procedures lead to deviating results. Calculations based on a generalized rate equation system are used to model the photoconductivity and the resulting effective lifetime for different measurement conditions and defect models. The simulation results are compared to measurements on several mono- and multicrystalline silicon samples with and without surface passivation. Our results clearly show, that for low as well as high injection conditions deviations occur for the measurement and analysis techniques investigated. To allow for a comparison of lifetime data, we recommend to report exact measurement conditions and analysis procedures as well as to perform measurements in a certain injection range. Only if no trapping effects are present and the penetration depth of the applied method is significantly larger than the sample width, accurate and comparable lifetime results can be achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.