Abstract
Ultra-small mode volume nanophotonic crystal cavities have been proposed as powerful tools for increasing coupling rates in cavity quantum electrodynamics systems. However, their adoption in quantum information applications remains elusive. In this work, we investigate possible reasons why, and analyze the impact of different low mode volume resonator design choices on their utility in quantum optics experiments. We analyze band structure features and loss rates of low mode volume bowtie cavities in diamond and demonstrate independent design control over cavity-emitter coupling strength and loss rates. Further, using silicon vacancy centers in diamond as exemplary emitters, we investigate the influence of placement imprecision. We find that the benefit on photon collection efficiency and indistinguishability is limited, while the fabrication complexity of ultra-small cavity designs increases substantially compared to conventional photonic crystals. We conclude that ultra-small mode volume designs are primarily of interest for dispersive spin-photon interactions, which are of great interest for future quantum networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.