Abstract

We discuss the possibility to enhance the sensitivity of optical interferometric devices by increasing its open area using an external field gradient that act differently on the two arms of the interfer-ometers. The use of combined electric and magnetic field cancel non linear terms that dephases the interferometer. This is possible using well defined (typically with n $\sim$ 20 Rydberg) states, a magnetic field of few Tesla and an electric field gradient of $\sim$ 10V/cm 2. However this allows only for interaction times on the order of tens of $\mu$s leading a reachable accuracy of only 1 or 2 order of magnitude higher than standard light-pulse atom interferometers. Furthermore, the control of fields and states and 3D trajectories puts severe limits to the reachable accuracy. This idea is therefore not suitable for precision measurement but might eventually be used for gravity or neutrality in antimatter studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.