Abstract

The aim of this paper is to propose a model-based feedback control strategy for indoor temperature regulation in buildings equipped with underfloor air distribution. Supposing distributed sensing and actuation capabilities, a zero-dimensional model of the ventilation process is derived, based on the thermodynamics properties of the flow. A state-space description of the process is then inferred, including discrete events and non-linear components. The use of a wireless sensor network and the resulting communication constraints with the IEEE 802.15.4 standard are discussed. Both synchronous and asynchronous transmissions are considered. Based on the linear part of the model, different H-infinity robust multiple-input multiple-output (MIMO) controllers are designed, first with a standard mixed-sensitivity approach and then by taking into account the network-induced delay explicitly. The impact of the communication constraints and the relative performances of the controllers are discussed based on simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call