Abstract
Friction stir welding (FSWing) induces residual stresses and distortions in welded structures. Such residual stresses reduce the fatigue life of welded components, while the induced distortions prevent the welding of large or thin components. In the present study, needle peening was used to induce additional residual stresses in 2.3-mm thick (FSWed) aluminum alloy (AA) 2024-T3 sheets. This was done with the objective to counterbalance the welding-induced stresses and thus reduce the overall stresses and distortions. The needle peening process, which stems from shot peening, consists of hammering a surface using cylindrical spherical ended shots sliding back and forth in a treatment head. An instrumented needle peening machine was used to carry out peening on as-received (or bare) and bead-on-plate FSWed AA2024-T3 material. In both cases, the width of the peening area corresponded to that of a typical weld. The influence of the peening process parameters such as needle size, applied power and travel speed on the surface quality and magnitude of the induced distortions were evaluated. The results indicate that, by increasing the needle diameter from 1.2 mm to 2.0 mm, the peening-induced deflection on bare sheet material increased by an average value of 27% while the roughness average, Ra, decreased by an average value of 47%. It was also found that a surface finish qualitatively similar to that of conventional shot peening could be obtained by using appropriate needle peening trajectories. Finally, needle peening with an applied power of 10% was sufficient for eliminating 37% of the welding-induced transverse curvature and 82% of the welding-induced longitudinal curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.