Abstract
Abstract We develop central limit theory for tail risk forecasts in general location–scale models. We do so for a wide range of risk measures, viz. distortion risk measures (DRMs) and expectiles. Two popular members of the class of DRMs are the Value-at-Risk and the Expected Shortfall. The forecasts we consider are motivated by a Pareto-type tail assumption for the innovations and allow for extrapolation beyond the range of available observations. Simulations reveal adequate coverage of the forecast intervals derived from the limit theory. An empirical application demonstrates that our estimators outperform nonparametric alternatives when forecasting extreme risk in sufficiently large samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.