Abstract
Central and local limit theorems are derived for the number of distinct summands in integer partitions, with or without repetitions, under a general scheme essentially due to Meinardus. The local limit theorems are of the form of Cramér-type large deviations and are proved by Mellin transform and the two-dimensional saddle-point method. Applications of these results include partitions into positive integers, into powers of integers, into integers [jβ], β>1, into aj+b, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.