Abstract

That there exist two losing games that can be combined, either by random mixture or by nonrandom alternation, to form a winning game is known as Parrondo's paradox. We establish a strong law of large numbers and a central limit theorem for the Parrondo player's sequence of profits, both in a one-parameter family of capital-dependent games and in a two-parameter family of history-dependent games, with the potentially winning game being either a random mixture or a nonrandom pattern of the two losing games. We derive formulas for the mean and variance parameters of the central limit theorem in nearly all such scenarios; formulas for the mean permit an analysis of when the Parrondo effect is present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.