Abstract

Scaling limits of continuous time random walks are used in physics to model anomalous diffusion, in which a cloud of particles spreads at a different rate than the classical Brownian motion. Governing equations for these limit processes generalize the classical diffusion equation. In this article, we characterize scaling limits in the case where the particle jump sizes and the waiting time between jumps are dependent. This leads to an efficient method of computing the limit, and a surprising connection to fractional derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.