Abstract

We consider a stationary sequence \((X_n)\) constructed by a multiple stochastic integral and an infinite-measure conservative dynamical system. The random measure defining the multiple integral is non-Gaussian and infinitely divisible and has a finite variance. Some additional assumptions on the dynamical system give rise to a parameter \(\beta \in (0,1)\) quantifying the conservativity of the system. This parameter \(\beta \) together with the order of the integral determines the decay rate of the covariance of \((X_n)\). The goal of the paper is to establish limit theorems for the partial sum process of \((X_n)\). We obtain a central limit theorem with Brownian motion as limit when the covariance decays fast enough, as well as a non-central limit theorem with fractional Brownian motion or Rosenblatt process as limit when the covariance decays slowly enough.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.