Abstract

Consider a Markov chain $\{X_n\}_{n\ge 0}$ with an ergodic probability measure $\pi$. Let $\Psi$ a function on the state space of the chain, with $\alpha$-tails with respect to $\pi$, $\alpha\in (0,2)$. We find sufficient conditions on the probability transition to prove convergence in law of $N^{1/\alpha}\sum_n^N \Psi(X_n)$ to a $\alpha$-stable law. ``Martingale approximation'' approach and ``coupling'' approach give two different sets of conditions. We extend these results to continuous time Markov jump processes $X_t$, whose skeleton chain satisfies our assumptions. If waiting time between jumps has finite expectation, we prove convergence of $N^{-1/\alpha}\int_0^{Nt} V(X_s) ds$ to a stable process. In the case of waiting times with infinite average, we prove convergence to a Mittag-Leffler process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call