Abstract
The limit state characteristics of base-course granular materials were obtained using a typical triaxial testing equipment devoted to the measurement of resilient modulus. Accurate monitoring of axial strain during isotropic and anisotropic compression was used to determine the stress conditions where significant irrecoverable strains occur for samples prepared by static compression, Proctor rammer, and vibratory compaction. The limit state curve is highly anisotropic, centered about the q/p=1 line. It is sensitive to sample preparation technique and fines content. The Strategic Highway Research Program (SHRP) procedure corresponds to stress paths during conditioning and repeated loading that remain within the limit state curve of the control base course material containing 3.5% fines. The resilient modulus values reflect henceforth the behaviour of the same material with its original particle contact distribution. The Laboratoires des Ponts et Chaussees (LCPC) procedure is characterized by stress paths that cross the original limit state curve of the Proctor compacted samples. Particle contact distribution changes thus continuously as the limit state curve expands in response to the various stress paths used in this procedure. The resilient modulus values correspond to samples with different fabrics. A simple procedure based on isotropic loading has been proposed for the determination of a simplified limit state curve of base course materials with the intent of specifying the testing conditions for obtaining adequate resilient modulus values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geotechnical and Geoenvironmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.