Abstract

In this paper we consider the stochastic six-vertex model on a cylinder with arbitrary initial data. First, we show that it exhibits a limit shape in the thermodynamic limit, whose density profile is given by the entropy solution to an explicit, non-linear conservation law that was predicted by Gwa-Spohn in 1992 and by Reshetikhin-Sridhar in 2018. Then, we show that the local statistics of this model around any continuity point of its limit shape are given by an infinite-volume, translation-invariant Gibbs measure of the appropriate slope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.