Abstract

Optical networks form an integral part of the world-wide communication infrastructure and nowadays over 95% of data traffic is carried over fibres. Erbium-doped fibre amplifiers (EDFAs) and Raman amplifiers have made it possible to extend the usable fibre bandwidth to increase the achievable capacity of optical communications in past decades to meet the ever-growing information rate demands. However, these amplification technologies are now viewed as limiting the accessible optical spectrum to ~5 THz and ~10 - 15 THz, respectively. Currently, the presence of Kerr effects in fibre channels has been largely regarded as the major bottleneck for enhancing achievable information rates of optical communications. Signal performance degradations due to fibre nonlinearities are more severe in the systems utilising larger transmission bandwidths, closer channel spacing and higher-order modulation formats. In this work, we will study the impact and compensation of Kerr effects to analyse the performance of long-haul optical fibre communication systems using EDFAs and Raman amplifiers. Achievable information rates of such ultra-wideband optical transmission systems will be discussed considering nonlinearity compensation and probabilistic shaping techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call