Abstract

This paper focuses on the mechanisms and limits for the peak ice load values on inclined marine structures, and presents a buckling model, which explains well the phenomena behind the maximum peak ice loads. The study is based on two-dimensional combined finite-discrete element method simulations of the failure process of level ice against a structure. The simulations yield ice load records, which show consecutive peak ice load events. The complexity of the failure process makes the analysis on the mechanical phenomena behind the peak ice load events extremely challenging. The introduced buckling model assumes that the ice sheet breaks into separate ice floes in front of the structure before the maximum peak ice loads occur. The model is demonstrated to be able to quantify the effect of force chains, which have an important role in the ice-structure interaction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.