Abstract
This paper deals with invariant measures of fractional stochastic reaction–diffusion equations on unbounded domains with locally Lipschitz continuous drift and diffusion terms. We first prove the existence and regularity of invariant measures, and then show the tightness of the set of all invariant measures of the equation when the noise intensity varies in a bounded interval. We also prove that every limit of invariant measures of the perturbed systems is an invariant measure of the corresponding limiting system. Under further conditions, we establish the ergodicity and the exponentially mixing property of invariant measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.