Abstract

Steam generator in a nuclear power plant is huge heat exchanger that transfers heat from reactor to make steam to drive turbine-generator. Failure of the steam generator tubes can result in the release of fission products to the secondary side. Therefore, accurate integrity assessment of the cracked steam generator tubes is of great importance for maintaining the safety of the nuclear power plant. This paper provides limit loads for circumferential through-wall cracks in steam generator tubes under combined internal pressure and bending loads. Such limit loads are developed on the basis of three dimensional finite element analyses assuming elastic-perfectly plastic material behavior. As for the crack location, both the top of the tubesheet and U-bend regions are considered. The analysis results can be directly applied to the practical integrity assessment of cracked steam generator tubes, because the comparison between experimental data and FE results shows a very good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.