Abstract

AbstractLet $X_1,X_2, \ldots, X_n$ be a sequence of independent random points in $\mathbb{R}^d$ with common Lebesgue density f. Under some conditions on f, we obtain a Poisson limit theorem, as $n \to \infty$ , for the number of large probability kth-nearest neighbor balls of $X_1,\ldots, X_n$ . Our result generalizes Theorem 2.2 of [11], which refers to the special case $k=1$ . Our proof is completely different since it employs the Chen–Stein method instead of the method of moments. Moreover, we obtain a rate of convergence for the Poisson approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.