Abstract

Abstract The degenerative effect of temperature fluctuations during storage time is a critical condition that needs to be quantitatively characterized in products where drip losses are appreciable. In this work, real storage conditions were reproduced using freezers modified to cause 3 levels of temperature fluctuation (± 0, ± 3, ± 5; ± 7) during storage of Tilapia (Oreochromis sp), at temperature of –18 °C. The fast frozen tilapia muscle (freezing cabinet) was chosen to quantify the growth of ice crystals according to temperature fluctuations. The identification of crystals in the optical microscope as well as histological treatments and measurements using specific software has shown that the growth of ice crystals in the first days of storage follows an asymptote, whose final value is conditioned only by the level of temperature fluctuations regardless of initial diameter, which begins storage. It has also been found that the growth of crystals formed during rapid freezing rapidly develops according to temperature fluctuations to which the product has been subjected. This work also identified statistically significant differences in the equivalent diameter of crystals formed at the four proposed levels of temperature fluctuation with significance level of p < 0.05.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.