Abstract

The tunnel face stability in composite strata, commonly referred to as the soft upper and hard lower condition, is a critical challenge in tunnel construction. The soft–hard ratio (SA) strongly influences the limit support pressure as well as the failure mechanism experienced by a tunnel face. This study focused on the Xingye Tunnel project in the Xiangzhou District of Zhuhai City. By conducting numerical simulations, the impact of different SAs on the limit support pressure was investigated. Furthermore, a limit equilibrium model was established on the basis of the analysis of the results of numerical simulation. The findings were then compared and analyzed alongside those of relevant theoretical models. In the event of tunnel face instability of composite strata, the deformation tends to be concentrated mainly in the soft soil layer, with less noticeable deformation in the hard rock layer. The investigation of different SAs revealed a linear decrease in the limit support pressure ratio of the tunnel face in composite strata as SA decreases. The self-stability of the tunnel face was observed when SA ≤ 0.125. Moreover, the limit support pressure ratio predicted by the truncated log-spiral model (TLSM) exhibited a higher degree of agreement with the results of numerical simulation than those of other relevant models. The superiority of TLSM was mainly demonstrated in the range of SA = 0.25 to 1.0.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call