Abstract

We establish upper bounds for the number of limit cycles (isolated periodic solutions in the set of periodic solutions) of the two families of scalar ordinary differential equations $x'=(a(t) x +b(t)) f(x)$ and $x'=a(t) g(x) +b(t)f(x)$, where $f(x)$ and $g(x)$ are analytic funtions and $a(t)$, $b(t)$ are $T$--periodic continuous functions for which there exist $\alpha, \beta \in R$ such that $\alpha a(t)+\beta b(t)$ is not identically zero and does not change sign in $[0,T]$. As a consequence we obtain that generalized Abel equations $x'=a(t)x^n + b(t)x^m$, where $n> m \geq 1$ are natural numbers, have at most three limit cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call