Abstract

Based on insight obtained from a newly developed cochlea model, we argue that noise-driven limit cycles are the basic ingredient in the mammalian cochlea hearing process. For insect audition, we provide evidence in favor of the persistence of this principle. We emphasize the role of bifurcations for the emergence of broad-range sound perception, both in the frequency and amplitude domain, and indicate that this crucially depends on the correct coupling between limit cycles. We review the limit-cycle coupling universality, and outline how it can be used to encode information. Cortical noise is the microscopic basis for this encoding, whereas chaos emerges as the macroscopic expression of computation being done in the network. Large neuron firing variability is one possible consequence of the proposed mechanism that may apply to both vertebrate and insect hearing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call