Abstract

We propose an approach to study small limit cycle bifurcations on a center manifold in analytic or smooth systems depending on parameters. We then apply it to the investigation of limit cycle bifurcations in a model of calcium oscillations in the cilia of olfactory sensory neurons and show that it can have two limit cycles: a stable cycle appearing after a Bautin (generalized Hopf) bifurcation and an unstable cycle appearing after a subcritical Hopf bifurcation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.