Abstract

The subject of this paper concerns with the bifurcation of limit cycles and invariant cylinders from a global center of a linear differential system in dimension 2n perturbed inside a class of continuous and discontinuous piecewise linear differential systems. Our main results show that at most one limit cycle and at most one invariant cylinder can bifurcate using the expansion of the displacement function up to first order with respect to a small parameter. This upper bound is reached. For proving these results we use the averaging theory in a form where the differentiability of the system is not needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.