Abstract

AbstractMany gene regulatory networks have periodic behavior, for instance the cell cycle or the circadian clock. Therefore, the study of formal methods to analyze limit cycles in mathematical models of gene regulatory networks is of interest. In this work, we study a pre-existing hybrid modeling framework (HGRN) which extends René Thomas’ widespread discrete modeling. We propose a new formal method to find all limit cycles that are simple and deterministic, and analyze their stability, that is, the ability of the model to converge back to the cycle after a small perturbation. Up to now, only limit cycles in two dimensions (with two genes) have been studied; our work fills this gap by proposing a generic approach applicable in higher dimensions. For this, the hybrid states are abstracted to consider only their borders, in order to enumerate all simple abstract cycles containing possible concrete trajectories. Then, a Poincaré map is used, based on the notion of transition matrix of the concrete continuous dynamics inside these abstract paths. We successfully applied this method on existing models: three HGRNs of negative feedback loops with 3 components, and a HGRN of the cell cycle with 5 components.KeywordsHybrid modelingCelerityTransition matrixLimit cycleGene regulatory networksPoincaré map

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.