Abstract

Abstract Let K denote prefix-free Kolmogorov complexity, and let $K^A$ denote it relative to an oracle A. We show that for any n, $K^{\emptyset ^{(n)}}$ is definable purely in terms of the unrelativized notion K. It was already known that 2-randomness is definable in terms of K (and plain complexity C) as those reals which infinitely often have maximal complexity. We can use our characterization to show that n-randomness is definable purely in terms of K. To do this we extend a certain “limsup” formula from the literature, and apply Symmetry of Information. This extension entails a novel use of semilow sets, and a more precise analysis of the complexity of $\Delta _2^0$ sets of minimal descriptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.