Abstract

The convergence properties of the empirical characteristic process $Y_n(t) = n^{1/2}(c_n(t) - c(t))$ are investigated. The finite-dimensional distributions of $Y_n$ converge to those of a complex Gaussian process $Y$. First the continuity properties of $Y$ are discussed. A class of counterexamples is presented, showing that if the underlying distribution has low logarithmic moments then $Y$ is almost surely discontinuous, and hence $Y_n$ cannot converge weakly. When the underlying distribution has high enough moments then $Y_n$ is strongly approximated by suitable sequences of Gaussian processes with specified rate-functions. The approximation is based on that of Komlos, Major and Tusnady for the empirical process. Convergence speeds for the distribution of functionals of $Y_n$ are derived. A Strassen-type log log law is established for $Y_n$, and supremum-functionals on the appropriate set of limit points are explicitly computed. The technique throughout uses results from the theory of the sample function behaviour of Gaussian processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call