Abstract

We study Markov chains on ℤm,m≥ 2, that behave like a standard symmetric random walk outside of the hyperplane (membrane)H= {0} × ℤm−1. The exit probabilities from the membrane (penetration probabilities) H are periodic and also depend on the incoming direction toH, what makes the membrane H two-sided. Moreover, sliding along the membrane is allowed. We show that the natural scaling limit of such Markov chains is a m-dimensional diffusion whose first coordinate is a skew Brownian motion and the otherm− 1 coordinates is a Brownian motion with a singular drift controlled by the local time of the first coordinate at 0. In the proof we utilize a martingale characterization of the Walsh Brownian motion and determine the effective permeability and slide direction. Eventually, a similar convergence theorem is established for the one-sided membrane without slides and random iid penetration probabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.