Abstract

Elastic and plastic limit angular velocities are calculated for rotating disks of variable thickness in power function form. Analytical solution is obtained and used to calculate elastic limit angular velocities of variable thickness rotating annular disks and annular disks with rigid inclusion. An efficient numerical solution procedure is designed and used to obtain the elastic limit angular velocities of variable thickness rotating solid disks. Von Mises yield criterion and its flow rule is used to estimate plastic limit angular velocities. Both linear and nonlinear hardening material behaviors are treated numerically. The results are verified by comparing with those of uniform thickness rotating solid disks available in the literature. Elastic and plastic limit angular velocities are found to increase with the reduction of the disk thickness at the edge as well as the reduction in the disk mass due to the shape of the profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call