Abstract

A limit analysis numerical approach oriented to predict the peak/collapse load of human proximal femur, under two different loading conditions, is presented. A yield criterion of Tsai–Hu-type, expressed in principal stress space, is used to model the orthotropic bone tissues. A simplified human femur 3D model is envisaged to carry on numerical simulation of in-vitro tests borrowed from the relevant literature and to reproduce their findings. A critical discussion, together with possible future developments, is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.