Abstract

In this paper, a formulation for limit analysis of three-dimensional masonry structures discretized as rigid block assemblages interacting through no-tension and frictional contact interfaces is developed. Linear and piecewise linearized yield functions are used for rocking, sliding and torsion failure. A simple yield condition has been defined to take into account interaction effects of shear force with torsion and bending moment. Associative flow rules are considered for strain rates. On the basis of the developed governing equations, the limit analysis problem has been formulated as a nonlinear mathematical program. An iterative solution procedure based on linear programming is used to solve the limit analysis problem and to take into account nonlinearities due to the influence of bending moments and shear stresses on torsion strength. The results of experimental investigations on out-of-plane masonry walls constrained at one edge and different examples from literature were considered for validation. Comparison with existing formulations is carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.