Abstract

In this research, a number of process modifications to the lime-soda softening process were examined, including utilization of high Mg-content lime, addition of MgCl 2 , and the recycling of softening sludge, in order to improve the removal of natural organic matter (NOM) and reduce the formation of disinfection byproducts (DBPs). Jar test results showed that dissolved organic carbon (DOC) removal increased and trihalomethane (THM) formation was reduced as the magnesium in hydrated lime increased, and was directly correlated with the amount of magnesium removed from the system. However, a dolomitic quick lime hydrated under atmospheric conditions resulted in less effective DOC removal due to a lack of available Mg, and subsequently, less co-precipitation of Mg(OH) 2 -NOM complexes. The addition of MgCl 2 to the raw water also increased DOC removal and reduced THM formation in both the presence and absence of softening sludge, with DOC removal increasing as softening sludge and magnesium dosages increased. As high as 43% removal of DOC was achieved at the stoichoimetric lime-soda ash dose in the presence of 457 mg/L sludge and 7.5 mg/L MgCl 2 , as compared to only 13% removal in the absence of sludge and MgCl 2 . The recycling of softening sludge had little or no effect on the hardness and the level of inorganic elements in treated water. The results presented here provide new approaches for improving DBP precursor removal during lime-soda softening without significantly increasing lime and soda ash dosage or the generation of waste sludge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.