Abstract

Abstract Hydrogen is expected to be one of the most important energy carriers in the future. Gasification process may be used to produce hydrogen when joined with carbon capture technologies. Furthermore, the combination of biomass gasification and carbon capture presents a significant technical potential in net negative greenhouse gas emissions. Lime enhanced biomass gasification process makes use of CaO as a high temperature CO2 carrier between the steam biomass gasifier and an oxy-fired regenerator. Important energy penalties derive from the temperature difference between the reactors (around 250–300 °C). A cyclonic preheater similar to those used in the cement industry may improve the energetic efficiency of the process if the particles entering the regenerator reactor are heated up by the gas leaving this reactor. A lime enhanced biomass gasification system was modelled and simulated. A cyclonic preheater was included to evaluate the improvement. Results show an increase of the gasification chemical efficiency and a reduction of the energy consumption in the regenerator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call