Abstract

The use of limbs for foraging is documented in both marine and terrestrial tetrapods. These behaviors were once believed to be less likely in marine tetrapods due to the physical constraints of body plans adapted to locomotion in a fluid environment. Despite these obstacles, ten distinct types of limb-use while foraging have been previously reported in nine marine tetrapod families. Here, we expand the types of limb-use documented in marine turtles and put it in context with the diversity of marine tetrapods currently known to use limbs for foraging. Additionally, we suggest that such behaviors could have occurred in ancestral turtles, and thus, possibly extend the evolutionary timeline of limb-use behavior in marine tetrapods back approximately 70 million years. Through direct observation in situ and crowd-sourcing, we document the range of behaviors across habitats and prey types, suggesting its widespread occurrence. We argue the presence of these behaviors among marine tetrapods may be limited by limb mobility and evolutionary history, rather than foraging ecology or social learning. These behaviors may also be remnant of ancestral forelimb-use that have been maintained due to a semi-aquatic life history.

Highlights

  • Marine turtles (Chelonioidea Oppel, 1811) and most other marine tetrapods, have evolved body forms that are best suited to move, orient, and minimize drag in a fluid environment rather than using their articulating limbs to directly aid in prey capture or processing (Fish, 2016)

  • We describe three marine turtle species—green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and loggerhead (Caretta caretta)—using limbs in the wild to aid in foraging in ways which have not been previously assessed in detail

  • The use of limbs to directly aid in foraging, while still relatively rare, is a strategy used by a variety of marine tetrapods

Read more

Summary

Introduction

Marine turtles (Chelonioidea Oppel, 1811) and most other marine tetrapods, have evolved body forms that are best suited to move, orient, and minimize drag in a fluid environment rather than using their articulating limbs to directly aid in prey capture or processing (Fish, 2016). Due to the limitation of these evolved body plans and the constraints of the aquatic environment, Taylor (1987) predicted mouth-based filter, suction, or ram foraging to be the primary foraging mechanisms for all marine tetrapods. The evolution of foraging mechanisms generally coincides with associated morphological traits, such as filter feeding and baleen in Mysticete whales (Deméré et al, 2008), many species have been observed using innovative strategies counter to what their evolved body plans would predict. Such exaptations can provide insight into an organism’s current ecological dynamics (Gould & Vrba, 1982) as well as the evolutionary conditions influencing these novel behaviors

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call