Abstract
Insect growth regulator application for wetland mosquito control remains controversial due to the potential for disruption of normal development and growth processes in non-target crustaceans and beneficial arthropods, e.g. Apis mellifera. Concerns include slow-release methoprene formulations and its environmental breakdown products which mimic an endogenous crustacean hormone and retinoids, respectively. Our primary objective was to evaluate the effect that a chronic methoprene exposure would have on male and female Uca pugnax limb regeneration and molting. After single limb autonomy, limb growth and molt stage were monitored every two days while eyestalk ablation was used to induce proecdysis. Dorsal carapace was collected 6 days post-molt to determine protein and chitin content. In post-molt crabs, methoprene-exposed individuals displayed lower percent gain in body weight. Male crabs lost more weight per body volume than females, took significantly longer to proceed through proecdysis than females exposed to 0.1 µg/L methoprene and exhibited significantly elevated frequency for abnormal limb formation at 1.0 µg/L while females displayed no such trend. Methoprene did not significantly alter extractable exoskeleton protein or chitin content. However, variable water-soluble protein expression increased with exposure at 1.0 µg/L (1 ppb) which contributed to overall variability in total protein content. Our findings suggest that adult male U. pugnax possess greater sensitivity to chronic methoprene exposure during limb regeneration and molting, potentially affecting their post-molt fitness. Furthermore, methoprene has the potential to impact post-molt biomass and exocuticle quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.