Abstract

BackgroundThe chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. CXCR2 is also involved in pathogenesis of chronic inflammation, sepsis and atherosclerosis. The ability of CXCR2 to associate with a variety of proteins dynamically is responsible for its effects on directed cell migration or chemotaxis. The dynamic network of such CXCR2 binding proteins is termed as “CXCR2 chemosynapse”. Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1), binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration.Methodology/Principal FindingsWe demonstrate that CXCR2 and LASP-1 co-immunoprecipitate and co-localize at the leading edge of migrating cells. The LIM domain of LASP-1 directly binds to the carboxy-terminal domain (CTD) of CXCR2. Moreover, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4. Using a site-directed and deletion mutagenesis approach, Iso323-Leu324 of the conserved LKIL motif on CXCR2-CTD was identified as the binding site for LASP-1. Interruption of the interaction between CXCR2-CTD and LIM domain of LASP-1 by dominant negative and knock down approaches inhibited CXCR2-mediated chemotaxis. Analysis for the mechanism for inhibition of CXCR2-mediated chemotaxis indicated that LASP-1/CXCR2 interaction is essential for cell motility and focal adhesion turnover involving activation of Src, paxillin, PAK1, p130CAS and ERK1/2.Conclusions/SignificanceWe demonstrate here for the first time that LASP-1 is a key component of the “CXCR2 chemosynapse” and LASP-1 interaction with CXCR2 is critical for CXCR2-mediated chemotaxis. Furthermore, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4, suggesting that LASP-1 is a general mediator of CXC chemokine mediated chemotaxis. Thus, LASP-1 may serve as a new link coordinating the flow of information between chemokine receptors and nascent focal adhesions, especially at the leading edge. Thus the association between the chemokine receptors and LASP-1 suggests to the presence of a CXC chemokine receptor-LASP-1 pro-migratory module in cells governing the cell migration.

Highlights

  • The chemokine receptor CXCR2 is a major modulator of inflammation, angiogenesis, tumor growth, and wound healing [1,2,3,4,5,6,7,8]

  • We demonstrate for the first time that both CXCR2 and CXCR4 co-immunoprecipitate with endogenous LIM and SH3 protein 1 (LASP-1)

  • LASP-1 is an actin binding cytoskeletal protein that is known to be involved in cell migration and the targeted disruption of LASP1 enhanced the migration of mouse embryonic fibroblasts [47]

Read more

Summary

Introduction

The chemokine receptor CXCR2 is a major modulator of inflammation, angiogenesis, tumor growth, and wound healing [1,2,3,4,5,6,7,8]. The ability of CXCR2 to bind to a repertoire of proteins during intracellular trafficking dictates its ability to facilitate directed migration of leukocytes and endothelial cells. Proteomic analysis of the proteins that co-immunoprecipitate with CXCR2 in human neutrophil-like dHL-60 cells revealed that CXCR2 binds a novel protein, LIM and SH3 protein 1 (LASP-1), under both basal and ligand activated conditions [15]. The chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1), binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.