Abstract

Natural progression of HIV-1 infection depends on genetic variation in the human major histocompatibility complex (MHC) class I locus, and the CD8+ T cell response is thought to be a primary mechanism of this effect. However, polymorphism within the MHC may also alter innate immune activity against human immunodeficiency virus type 1 (HIV-1) by changing interactions of human leukocyte antigen (HLA) class I molecules with leukocyte immunoglobulin-like receptors (LILR), a group of immunoregulatory receptors mainly expressed on myelomonocytic cells including dendritic cells (DCs). We used previously characterized HLA allotype-specific binding capacities of LILRB1 and LILRB2 as well as data from a large cohort of HIV-1-infected individuals (N = 5126) to test whether LILR-HLA class I interactions influence viral load in HIV-1 infection. Our analyses in persons of European descent, the largest ethnic group examined, show that the effect of HLA-B alleles on HIV-1 control correlates with the binding strength between corresponding HLA-B allotypes and LILRB2 (p = 10−2). Moreover, overall binding strength of LILRB2 to classical HLA class I allotypes, defined by the HLA-A/B/C genotypes in each patient, positively associates with viral replication in the absence of therapy in patients of both European (p = 10−11–10−9) and African (p = 10−5–10−3) descent. This effect appears to be driven by variations in LILRB2 binding affinities to HLA-B and is independent of individual class I allelic effects that are not related to the LILRB2 function. Correspondingly, in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of DCs. Thus, we propose an impact of LILRB2 on HIV-1 disease outcomes through altered regulation of DCs by LILRB2-HLA engagement.

Highlights

  • human immunodeficiency virus type 1 (HIV-1) disease progression is influenced by host genetic factors and varies greatly among infected individuals

  • Leukocyte immunoglobulin-like receptors B1 and B2 (LILRB1 and LILRB2) bind human leukocyte antigen (HLA) class I allotypes with variable affinities

  • We show that the binding strength of LILRB2 to HLA class I positively associates with level of viremia in a large cohort of untreated HIV-1-infected patients

Read more

Summary

Introduction

HIV-1 disease progression is influenced by host genetic factors and varies greatly among infected individuals. Alternative mechanisms may exist, given the fact that the HLA class I molecules represent important ligands for receptors regulating activities of innate immune cells. These include the killer cell immunoglobulin-like receptors (KIRs) and leukocyte immunoglobulin-like receptors (LILRs). Certain combinations of HLA-B and KIR3DL/S1 alleles encoding receptor-ligand pairs associate with slower disease progression, which may be due to increased natural killer cell responsiveness to infected cells [11,12]. A strong LILRB2-HLA-B*35-Px interaction is suggested to impair dendritic cell (DC) function during HIV-1 infection, possibly leading to faster disease progression [13]. Down-modulation of DC function was observed as a result of a stronger interaction between LILRB2 and HLA-B*27 loaded with the viral escape mutant KK10 L6M compared to the wild type peptide loaded complex [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call