Abstract

Psychological and neural distinctions between the technical concepts of “liking” and “wanting” pose important problems for motivated choice for goods. Why could we “want” something that we do not “like,” or “like” something but be unwilling to exert effort to acquire it? Here, we suggest a framework for answering these questions through the medium of reinforcement learning. We consider “liking” to provide immediate, but preliminary and ultimately cancellable, information about the true, long-run worth of a good. Such initial estimates, viewed through the lens of what is known as potential-based shaping, help solve the temporally complex learning problems faced by animals.

Highlights

  • Berridge and his colleagues [1,2,3,4] have long argued that there is a critical difference between “liking” and “wanting.” The scare quotes are copied from papers such as Morales and Berridge’s paper [1] to distinguish the more precise quantities that these authors have in mind from the arguably more blurry everyday meanings of these terms or subjective reports that humans can provide upon verbal request

  • Why should we have both “liking” and “wanting”? In this essay, we argue that “liking” systems play the role of what is known as potential-based shaping [26] in the context of reinforcement learning (RL; [27])

  • “liking” provides a preliminary assessment of the long-run worth of a morsel of food or a drop of liquid. The latter is reported by postoral evaluation mechanisms feeding into the dopamine system and is the substrate for establishing the motivational impact or “wanting” for those foodstuffs

Read more

Summary

Introduction

Berridge and his colleagues [1,2,3,4] have long argued that there is a critical difference between “liking” and “wanting.” The scare quotes are copied from papers such as Morales and Berridge’s paper [1] to distinguish the more precise quantities that these authors have in mind from the arguably more blurry everyday meanings of these terms or subjective reports that humans can provide upon verbal request. The idea is that the shaping function provides a hint about the values of states—being large for states that are associated with large long-run reward.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.