Abstract

To construct a confidence interval for the mean of a log-normal distribution in small samples, we propose likelihood-based approaches - the signed log-likelihood ratio and modified signed log-likelihood ratio methods. Extensive Monte Carlo simulation results show the advantages of the modified signed log-likelihood ratio method over the signed log-likelihood ratio method and other methods. In particular, the modified signed log-likelihood ratio method produces a confidence interval with a nearly exact coverage probability and highly accurate and symmetric error probabilities even for extremely small sample sizes. We then apply the methods to two sets of real-life data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.