Abstract
We consider likelihood ratio tests (LRT) and their modifications for homogeneity in admixture models. The admixture model is a two-component mixture model, where one component is indexed by an unknown parameter while the parameter value for the other component is known. This model is widely used in genetic linkage analysis under heterogeneity in which the kernel distribution is binomial. For such models, it is long recognized that testing for homogeneity is nonstandard, and the LRT statistic does not converge to a conventional χ(2) distribution. In this article, we investigate the asymptotic behavior of the LRT for general admixture models and show that its limiting distribution is equivalent to the supremum of a squared Gaussian process. We also discuss the connection and comparison between LRT and alternative approaches such as modifications of LRT and score tests, including the modified LRT (Fu, Chen, and Kalbfleisch, 2006, Statistica Sinica 16, 805-823). The LRT is an omnibus test that is powerful to detect general alternative hypotheses. In contrast, alternative approaches may be slightly more powerful to detect certain type of alternatives, but much less powerful for others. Our results are illustrated by simulation studies and an application to a genetic linkage study of schizophrenia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Biometrics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.