Abstract
Land surface model parameter estimation can be performed using soil moisture information provided by synthetic aperture radar imagery. The presence of speckle necessitates aggregating backscatter measurements over large (> 100 m × 100 m) land areas in order to derive reliable soil moisture information from imagery, and a model calibrated to such aggregated information can only provide estimates of soil moisture at spatial resolutions required for reliable speckle accounting. A method utilizing the likelihood formulation of a probabilistic speckle model as the calibration objective function is proposed which will allow for calibrating land surface models directly to radar backscatter intensity measurements in a way which simultaneously accounts for model parameter- and speckle-induced uncertainty. The method is demonstrated using the NOAH land surface model and Advanced Integral Equation Method (AIEM) backscatter model calibrated to SAR imagery of an area in the Southwestern United States, and validated against in situ soil moisture measurements. At spatial resolutions finer than 100 m × 100 m NOAH and AIEM calibrated using the proposed radar intensity likelihood parameter estimation algorithm predict surface level soil moisture to within 4% volumetric water content 95% of the time, which is an improvement over a 95% prediction confidence of 10% volumetric water content by the same models calibrated directly to soil moisture information derived from synthetic aperture radar imagery at the same scales. Results suggest that much of this improvement is due to increased ability to simultaneously estimate NOAH parameters and AIEM surface roughness parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.