Abstract
Approximate Bayesian Computational (ABC) methods, or likelihood-free methods, have appeared in the past fifteen years as useful methods to perform Bayesian analysis when the likelihood is analytically or computationally intractable. Several ABC methods have been proposed: MCMC methods have been developed by Marjoram et al. (2003) and by Bortot et al. (2007) for instance, and sequential methods have been proposed among others by Sisson et al. (2007), Beaumont et al. (2009) and Del Moral et al. (2012). Recently, sequential ABC methods have appeared as an alternative to ABC-PMC methods (see for instance McKinley et al., 2009; Sisson et al., 2007). In this paper a new algorithm combining population-based MCMC methods with ABC requirements is proposed, using an analogy with the parallel tempering algorithm (Geyer 1991). Performance is compared with existing ABC algorithms on simulations and on a real example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.