Abstract

SUMMARY We consider some of the problems associated with likelihood estimation in the context of a mixture of multivariate normal distributions. Unfortunately with mixture models, the likelihood equation usually has multiple roots and so there is the question of which root to choose. In the case of equal covariance matrices the choice of root is straightforward in the sense that the maximum likelihood estimator exists and is consistent. However, an example is presented to demonstrate that the adoption of a homoscedastic normal model in the presence of some heteroscedasticity can considerably influence the likelihood estimates, in particular of the mixing proportions, and hence the consequent clustering of the sample at hand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.